Research - Göttingen, Niedersachsen, Germany
The InnerEarLab explores sensory processing in the inner ear during normal and impaired function. A common focus of the groups in the InnerEarLab is on sensory encoding in the inner ear by specialized synapses the hair cell ribbon synapses. We combine various techniques for studying the molecular anatomy and physiology of these synapses. The junior group of Ellen Reisinger deals with the molecular biology and genetics of cochlear neurotransmission, studying gene expression, protein biochemistry and structure of hair cell synaptic proteins and performs genetic manipulations of hair cells for physiological studies and preparing the grounds for future gene therapy. The junior group of Carolin Wichmann studies the molecular ultrastructure of synapses using light and electron microscopy. The group of Tobias Moser uses patch-clamp, optical methods, and biophysical modeling to study structure and function of hair cell ribbon synapse and the endbulb of Held synapse in the cochlear nucleus. The junior group of Tina Pangršič Vilfan studies the molecular and cellular physiology of vestibular neurotransmission. The junior group of Nicola Strenzke studies auditory systems physiology at the single neuron and population levels. The group of Bernstein Fellow Andreas Neef uses experiments and modeling to explore sound encoding at the microscopic scale. The Canis group studies cochlear blood flow using intravital microscopy and pharmacology. The Moser and Strenzke groups also work on establishing optogenetic stimulation of the auditory nerve as a tool for auditory research and improved hearing restoration by cochlear implants. The Canis, Moser, and Strenzke groups also perform clinical research.